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On the change in helix handedness at transitions between the SmC*
and SmC*

a phases in chiral smectic liquid crystals

JAN P.F. LAGERWALL*{, FRANK GIESSELMANN{ and MIKHAIL OSIPOV{

{Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

{Department of Mathematics, University of Strathclyde, Glasgow, UK

(Received 15 July 2005; accepted 23 August 2005 )

Using a discrete model for the synclinic SmC* and the anticlinic SmC�a phases we give a
theoretical explanation for the fact that the helix twisting sense reverses at a transition
between these phases (direct transition or via the so-called chiral smectic C ‘subphases’) and
we derive an explicit expression for the helical pitch in the SmC�a phase. As the theory shows
and as we also demonstrate experimentally, the reversal is of a different nature from helix
inversions within a single phase, where the inversion is always coupled to a pitch divergence.
At a clinicity change the common behaviour is instead pitch-shortening on approaching the
phase transition and the associated helix twisting sense reversal. The phenomenon may be put
to use in smart mixing in order to control the helix pitch, either for achieving long pitch for
surface-stabilized ferroelectric and antiferroelectric liquid crystal displays; or a very short
pitch, in the case of devices utilizing the deformed helix mode.

1. Introduction

It is an empirically well established fact that the helical

superstructures of the SmC* and SmC�a phases, when

they both occur in the same substance, have opposite

handedness [1–3], but no attempts have, to our knowl-

edge, been made at explaining it theoretically. Here we

give such an explanation, using a discrete phenomen-

ological model, and we demonstrate experimentally,

using mixtures of strictly syn- and anticlinic compounds

(forming no other smectic C-type phase than SmC* and

SmC�a, respectively), that the helix sense reversal is of a

quite different nature from helix inversions within one

and the same phase. We finally discuss how the

phenomenon may be useful when developing mixtures

for devices based on ferroelectric (FLC) or antiferro-

electric liquid crystals (AFLCs).

2. The origin of the helical twisting sense reversal at the

smectic C*–smectic Ca* transition

In this section we show that the change in handedness of

the helical structure at a transition from synclinic SmC*

to anticlinic SmC�a is generally a result of the clinicity

change itself. Thus it should be a general phenomenon

not related to a particular molecular structure, at least

in one-component systems (the observations described

in the experimental section show, however, that it holds

also for binary mixtures). We first consider a very

simple model which enables one to demonstrate the

origin of the effect, and then we derive more general

expressions for the helical pitch in the SmC* and SmC�a
phases, which can be compared directly because they

depend on the same parameters of the model.

2.1. A simple discrete model

In the discrete model the free energy F of a smectic

phase per unit area of the layers is expressed as a sum

over all layers:

F~
X

j

Fj ð1Þ

where the Fj depend on the order parameters for

individual layers j. In the simplest case one may

consider only the tilting order parameter [4–6]

wj~ n:kð Þ n|kð Þ ð2Þ

where n is the director and k is the unit vector in the

direction perpendicular to the smectic layers (the

smectic layer normal). The magnitude of the tilting

order parameter |wj|5w05(1/2)sin 2H where H is the tilt

angle and its direction is perpendicular to the tilt plane.

Now the free energy can be expressed in terms of simple
*Corresponding author. Email: jan.lagerwall@ipc.uni-stutt-
gart.de
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invariants composed of the pseudovectors wj and the

layer normal k0 [7, 8]:

F~
X

j

F0 w2
j

� �
{

1

2
g wj

:wjz1

� �
{l wj|wjz1

:k0

� �
: ð3Þ

Here F0 is the internal free energy of any single layer,

and the last two terms in equation (3) describe the

orientational coupling between adjacent layers. This

coupling is expressed taking into account only terms

quadratic in wj. The second term describes the non-

chiral orientational coupling while the third term is

present only in chiral systems. The coefficient l is a

pseudoscalar which is determined by molecular chirality.

It is well known that the simple model (3) can be used

to describe the transition between the synclinic and the

anticlinic phase [9–11]. Indeed, as (wj?wj+1) is positive in

the synclinic but negative in the anticlinic case, we see

that the synclinic structure is stable if the parameter

g.0, while the anticlinic structure is stable if g,0. The

third (chiral) term induces the helical structure in both

phases, and one can express the helical pitch in the

synclinic and the anticlinic phases in terms of the model

parameters l and g. Again, the sense of the helix is

determined by the structure that corresponds to a

negative third term in equation (3).

One can then readily understand the origin of the sense

reversal at the synclinic–anticlinic transition using the

following simple qualitative argument. Let us assume

that the z-axis is perpendicular to the smectic layers and

that the tilt order parameter wj in the layer j is parallel to

the x-axis, i.e. wj5w0(1, 0, 0). In the SmC* phase with

helical structure the tilt order parameter wj+1 in the

adjacent layer j+1 can be expressed as wj+15w0(cos qd,

sin qd, 0) where q is the wave vector of the helical

structure and d is the layer spacing. The non-helical case

wj5wj+1 corresponds to the limit q50. Substituting these

expressions into the third term in equation (3) one

obtains {l wj|wjz1
:k0

� �
~ {lw2

0 sin qd, which for a

positive l renders q.0 in SmC*.

Now one may assume that in the anticlinic SmC�a
phase the tilt order parameter wj is antiparallel to the x-

axis in the layer j, i.e. wj5w0(21, 0, 0). In the layer j+1 the

tilt order parameter wj+1 is given by the same expres-

sion as before. In this case we instead find that

{l wj|wjz1
:k0

� �
~zlw2

0 sin qd. Thus the ‘helical twist-

ing power’ term in the free energy of the anticlinic

SmC�a phase is negative only if q is negative (since we

have assumed l.0), i.e. the twisting sense is opposite to

that of the synclinic SmC* phase. This simple argument

will be made more quantitative in the following sections.

2.1.1. Synclinic SmC* phase. In the helical SmC*

phase the tilting order parameter wj(z) can be expressed

as

wj~w zj

� �
~w0 cos qzj , sin qzj, 0

� �
ð4Þ

where q is the wave vector of the helical structure,

w05(1/2) sin 2H and zj5dj where d is the layer spacing.

The vector w(z) slowly rotates along the z-axis thus

describing the helix. The pitch of the helical structure

p52p/q is always much larger than the layer spacing d,

and therefore the free energy can be expanded in powers

of qd keeping the lowest order terms. In particular, the

order parameter in the layer j+1 can be expanded

around its value in the adjacent layer j up to the

quadratic term in q:

wjz1~wjzd
L

Lzj

wjz
1

2
d2 L2

Lz2
j

wjz . . . :: ð5Þ

It can readily be shown using equation (4) that

L2

Lz2
j

wj~{q2wj

wj
: L
Lzj

wj

� �
~0

and
L

Lzj

wj|k0~qwj:

ð6Þ

Using these results one obtains:

wj
:wjz1

� �
&w2

0 1{
1

2
q2d2

� �

wj|wjz1
:k0

� �
&w2

0qd:

ð7Þ

Substituting equation (7) into (3) and dividing by the

number of layers N, one thus obtains the free energy

density

F=N~F0 Hð Þz w2
0

N
{

g

2
z

gq2d2

4
{lqd

� �
ð8Þ

where we have introduced F0(H) for the component not

related to interactions between layers. Now the wave

vector q of the helical structure can be found by

minimization of the free energy (8):

q~z
2l

dg
: ð9Þ

2.1.2. Anticlinic SmCa* phase. In the helical anticlinic

SmC�a phase the (discrete) order parameter w(zj) can be

written in the form

w zj

� �
~w0 cos p=dzqð Þzj , sin p=dzqð Þzj, 0

� �
: ð10Þ
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Indeed, in the untwisted state (q50) the y component of

wj vanishes for all j and the x-component wj,x5w0 cos (p/

d)zj5w0 cos (pj) oscillates in sign from layer to layer

describing the anticlinic structure.

Using equation (10) and the relation zj5dj, the order

parameter of the anticlinic phase in the layer j+1 can be

expressed as:

wjz1~{w0 cos pjzqzjzqd
� �

, sin pjzqzjzqd
� �

, 0
� �

: ð11Þ

Expanding equation (11) in powers of qd up to the

second order one obtains

wjz1&{wj{ qdð Þw0 {sin pjzqzj

� �
, cos pjzqzj

� �
, 0

� �

z
1

2
qdð Þ2 cos pjzqzj

� �
, sin pjzqzj

� �
, 0

� �
z . . .

~{wj{d
L

Lzj

wj{
1

2
d2 L2

Lz2
j

wjz . . .

ð12Þ

One notes that the expansion (12) is similar to

equation (5) but with the negative sign. This negative

sign is determined by that of the scalar product of the

antiparallel order parameters wj and wj+1 in adjacent

layers in the anticlinic structure.

In exactly the same way as in the case of the syn-

clinic SmC* phase, the expansion (12) can be used to

obtain equations similar to (7), but with the opposite

sign:

wj
:wjz1

� �
&{w2

0 1{
1

2
qdð Þ2

	 


wj|wjz1
:k0

� �
&{w2

0qd:

ð13Þ

Substituting equations (13) into (3) one obtains the

expression for the free energy of the anticlinic phase as a

function of q

Fa=N~F0 Hð Þz w2
0

N

g

2
{

gq2d2

4
zlqd

� �
: ð14Þ

Minimization of the free energy (14) yields the expres-

sion for the wave vector of the helical structure in the

anticlinic phase:

q~
2l

dg
~{

2l

d gj j : ð15Þ

Note that the parameter g is negative within the stability

range of the anticlinic phase, hence the sign of q in

equation (15) is opposite compared with the corre-

sponding q in equation (9) for the synclinic phase, for

which g is positive. Thus the sense of the helical

structure in the anticlinic SmC�a phase is opposite to that

of the synclinic SmC* phase. One notes that this sign

reversal is simply a consequence of the fact that in the

anticlinic phase the director tilts in opposite directions

in neighboring layers.

It should be pointed out, however, that the model

used so far is oversimplified because the spontaneous

polarization P is taken into account neither in the

synclinic nor in the anticlinic phase in the model (3). It is

well known from the general Landau–de Gennes theory

of the ferroelectric SmC* phase that the coupling

between polarization and the tilting order parameter

makes an additional contribution to the pitch. In the

following two subsections we show that the same

expressions for the pitch can also be obtained using a

more general discrete model. The same approach will

also be used to derive a general expression for the pitch

in the anticlinic SmC�a phase.

2.2. Relation between continuum and discrete
approaches in the theory of the SmC* phase

In the general continuum approach the free energy

density of the ferroelectric SmC* phase can be written

as [4–6]:

F~F0 Hð Þz 1

2
K+2wz

1

2
x{1P2zmp w:Pð Þ

zmf P:curl wð ÞzL w:curl wð Þ
ð16Þ

where K is the elastic constant, x a generalized

susceptibility, mp and mf the piezo- and flexoelectric

coefficients, respectively; L is a chiral parameter which

induces the helical structure, and the order para-

meter w is given by equation (2). Only lower order

terms in H have here been taken into account. Assum-

ing that both variables in equation (16) depend only

on z, the free energy density can be rewritten in the

form

F~F0 Hð Þz 1

2
K

L2

Lz2
wz

1

2
x{1P2zmp w:Pð Þ

zmf P:k0|
L
Lz

w

� �
zL w:k0|

L
Lz

w

� �
:

ð17Þ

After minimizing the free energy (17) with respect to the

polarization P and the wave vector of the helical

structure q, one obtains the following equation for q [4,

5]:

q~
Lzxmpmf

K{xm2
f

: ð18Þ

Let us now derive the same equation using the

discrete model. Taking into account a coupling between

the tilting order parameter and the spontaneous

polarization, the free energy of the SmC* phase can

SmC* and SmC*a helix handedness 627
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be written as [8, 11]:

F~
X

j

F0 w2
j

� �
{

1

2
g wj

:wjz1

� �
{

1

2
b wj

:wjz1

� �2

{l wj|wjz1
:k0

� �
z

1

2x
P2

j zcp wj
:Pj

� �

z
1

2
cf Pj| wjz1{wj{1

� �
:k0

� �
;

ð19Þ

where the last term describes the so-called discrete

flexoelectric effect which is discussed in detail in

reference [8]. The coefficients cp and cf are related to

the piezo- and flexo-electric coefficients mp and mf of the

continuum approach (16). Here the quadratic coupling
term (the third term in equation (19) with b.0) has been

added to stabilize the system in the frustration region

where g<0 (see below). On first sight the free energy

(19) is rather different from equation (16). However, it

can readily be shown that equation (19) can be reduced

to the same mathematical form as (17), substituting the

expansion of the order parameter wj+1 given by

equation (5) and using the results of the previous
subsection. For example, the flexoelectric term can be

expanded as:

1

2
cf pj| wjz1{wj{1

� �
:k0

h i

&{cf Pj|d
L

Lzj

wj

� �
:k0

	 


~dcf Pj
: k0|

L
Lzj

wj

� �	 

ð20Þ

which exactly corresponds to the flexoelectric term in

the continuum free energy (16). In a similar way one

also obtains

g wj
:wjz1

� �
&g 1{

1

2
wj
: L2

Lz2
wj

 !" #
ð21Þ

which takes the form of the elastic energy after

integration by parts, and

l wj|wjz1

� �
:k0Þ&l wj

: k0|
L

Lzj

wj

� �	 

ð22Þ

which corresponds to the chiral term in the continuum

free energy.

The minimization of the free energy (19) yields the

following equation for the spontaneous polarization:

Pj~x cpwjzcf d k0|
L

Lzj

wj

� �	 
� �

&x cpz2cf qd
� �

wj:

ð23Þ

Substituting this equation back into the free energy (19)

and using equation (7), one obtains for the free energy

density:

F=N~F0 Hð Þ

z
w2

0

N
{

1

2
g{

1

2
bw2

0z
1

4
g qdð Þ2zbw2

0 qdð Þ2zl qdð Þ
	 


{
1

2

xw2
0

N
c2

pz2cpcf qdzc2
f qdð Þ2

h i
:

ð24Þ

Finally minimization of equation (24) yields the equa-

tion for the helical pitch which has exactly the same

mathematical form as (18) obtained from the general

continuum theory:

qd~
lzxcpcf

gz4bw2
0{2x cfð Þ2

: ð25Þ

Here the quantity g corresponds to the dimensionless

elastic konstant K/d2 in equation (18), cf corresponds to

the dimensionless flexocoefficient mf/d and cp corre-

sponds to mp. Thus the discrete model yields essentially

the same expression for the helical pitch as does the

general continuum theory.

The magnitude of the parameter g decreases on

approaching the synclinic–anticlinic phase transition

and at the transition point g50. Thus, without a suffi-

ciently large quadratic coupling constant b the effective

elastic constant (i.e. the denominator in equation (25))

will become negative at some point within the SmC*

phase close to the transition point, and for g52x(cf)
2 the

pitch would become zero. The quadratic coupling term

stabilizes the system in this region accounting for the

positive values of the effective elastic constant. It should

be noted, however, that the term 4bw2
0 may become

negligibly small close to the transition into the untilted

SmA* phase. In this regime, where the magnitude w of

the tilt order parameter is very small, the effective

dimensionless elastic constant Keff~gz4bw2
0{2x cfð Þ2

may, in principle, become very close to zero or even

negative for some materials if the parameter g is small.

One notes that the point where the effective elastic

constant Keff vanishes corresponds to the absolute limit

of stability of the macroscopic helical structure, with

pitch in the typical range of the SmC* and SmC�a phases

(,0.5 mm or longer). Above this point a different helical

structure with very short pitch may occur, which may

not be described using the expansion in powers of qd

used in this paper. This may explain the origin of the

SmC�a phase, the main characteristics of which are an

extremely short pitch and small tilt angle. The latter is

due to the fact that the phase — when it appears —

always forms following a second order transition from

SmA* and that its temperature range is small, typically

less than 5 K. Furthermore, the SmC�a phase appears

628 J. P. F. Lagerwall et al.
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only in AFLCs, i.e. in materials exhibiting the SmC�a
phase with g,0 at low temperatures. Since SmC�a is not

anticlinic, g must change sign between this phase and

SmC�a. If this sign change is close to the low-

temperature limit of SmC�a, the magnitude of g as well

as the tilt should be small within this phase. Hence it is

not unlikely that the requirements for Keff,0 are

fulfilled, thereby explaining why SmC�a rather than the

ordinary SmC* phase forms.

An experiment which supports this line of reasoning

was published by Isozaki et al. [12]. By reducing the

optical purity of the compound TFMHPOCBC, which

in its optically pure state exhibits a direct SmA�{SmC�a
transition (thus having g,0 at all temperatures below

the onset of tilt) the SmC�a phase was induced over the

interval between 80% and 60% enantiomeric excess. On

further racemization the SmC* phase appeared, first

below SmC�a, then directly below SmA*. Obviously

the reduction of optical purity continuously shifts the

balance between syn- and anticlinicity away from the

strictly anticlinic case of the optically pure compound.

In other words, g increases. At a certain amount of the

opposite enantiomer, g changes sign within the tem-

perature range of non-zero tilt. Thus, over a certain

interval of enantiomeric excess, g will be small but

positive at high temperatures, where the tilt is small.

According to the model the ordinary SmC* phase is

then unstable, explaining the appearance of SmCa*. As

the optical purity is further reduced the temperature

where g changes sign decreases. As a result, g is no

longer small in the region of small tilt and SmCa* is

replaced by SmC*.

2.3. Helical pitch of the anticlinic SmCa* phase

In the discrete model the free energy of the anticlinic

SmC�a phase is given by the same equation (19) but with

negative sign of the parameter g. Minimization yields an

equation for the spontaneous polarization:

Pj~xcpwjzx
1

2
cf k0| wjz1{wj{1

� �� �
: ð26Þ

Using equation (12) and the corresponding equation for

the order parameter in the layer j–1:

wj{1~{wjzd
L

Lzj

wj{
1

2
d2 L2

Lz2
j

wjz � � � ð27Þ

the polarization (26) can be expanded as

Pj&x cpwj{dcf k0|
L

Lzj

wj

� �	 
� �

&x cp{2dqcf

� �
wj:

ð28Þ

Substituting equation (28) into the free energy (19) and

using (13) one obtains

F=N~F0 Hð Þ

z
w2

0

N
{

1

2
g{

1

4
g qdð Þ2zbw2

0 qdð Þ2{l qdð Þ
� �

{
1

2

xw2
0

N
c2

p{2cpcf qzc2
f q2

� �
:

ð29Þ

where g,0. The expression for the helical pitch of the

anticlinic SmC�a phase is obtained by minimization of

the free energy density (29):

qd~{
lzxcpcf

gj jz4bw2
0{x cfð Þ2

: ð30Þ

Comparing equations (30) and (25) one concludes that

the sense of the helical pitch in the anticlinic SmC�a
phase should be opposite to that in the synclinic phase

also if the coupling between the tilt order parame-

ter and the polarization is taken into account. In the
simple model used here the absolute value is un-

affected by the transition, a situation which only rarely

occurs in reality. This discrepancy may possibly be

related to long range interactions between layers,

neglected in the present model. We have deliberately

restricted our analysis to interactions between adja-

cent layers in order to present simple analytical expres-

sions for the helical wave vector, from which one can
qualitatively understand the change of handedness at

the phase transition. In more complex models, includ-

ing long range interactions, the pitch can only be

calculated numerically [8, 13]. Such calculations yield

different absolute values of the pitch in the two phases

but always — as in the present model — a change of

handedness.

3. Experiments and observations

3.1. Strategy

The opposite handedness of the helix in the SmC* and

SmC�a phases of a single compound exhibiting both

these phases is well documented experimentally; see, for

example, [1–3]. In figure 1 we give a demonstration,

using the example of (S)-12F1M7 (cf. table 1), an

AFLC compound exhibiting the SmC* as well as the
SmC�a phase, with similar pitch magnitudes [14]. The

micrographs show the homeotropic texture in the two

phases viewed in transmission in the polarizing micro-

scope, illuminated with blue light (436 nm), between

crossed (centre column) and slightly decrossed polar-

izers. The selective reflection wavelength is ,480 nm in

SmC�a and ,450 nm in SmC*, hence the same branch of

the optical rotation function is studied in both cases.

SmC* and SmC*a helix handedness 629
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The opposite relations between polarizer decrossing

sense and transmission change in the two phases show

that they have opposite helix sense.

Rather than studying single-component AFLCs with

SmC* and SmC�a phases, we have in this work chosen to

look at mixture-induced transitions between the phases.

We have previously demonstrated [15] that the mixing

of strictly synclinic compounds with strict anticlinics

induces a clinicity frustration which the system can

resolve in one of three alternative ways: (1) direct

change between SmC* and SmC�a at a specific mixture

ratio; (2) the intermediate chiral smectic C phases SmC�b
and SmC�c are induced over a range of mixture ratios

close to 50:50; (3) the temperature range of the non-

tilted SmA* phase is expanded downwards such that it

separates the syn- and anticlinic phases in the phase

diagram.

Mixtures following the first two paths provide

excellent experimental systems for comparing with the

theoretical predictions described above. By studying

contact samples between the two components we can in

general observe the whole phase sequence at a single

temperature, and can thus easily make direct compar-

isons between the SmC* and SmC�a phases, without the

need for a controlled temperature gradient. Further-

more, we can choose the handedness of the SmC*

phase irrespective of that of the SmC�a phase, since

each is set by a different mesogen. This allows for the

generation of some quite interesting effects, as will be

described below.

3.2. Experimental details

The compounds used for the study are summarized in

table 1 together with their phase sequences. For

simplicity the study was restricted to (S)-enantiomers

of all mesogens (in one case to the (S,S)-stereoisomer).

Contact samples were prepared between selected syn-

and anticlinics on ordinary microscope slides. If

homeotropic alignment did not occur spontaneously

the slide was coated with a surfactant (CTAB) or with a

very thin layer of grease, ensuring fully homeotropic

alignment.

Textures were investigated in transmission in an

Olympus BH-2 polarizing microscope and photo-

graphed using a Nikon Coolpix digital camera mounted

on the phototube of the microscope. The samples were

inserted into an Instec Mk2 hotstage mounted on the

microscope table for accurate temperature control.

3.3. Experimental observations

In all cases when the two components have opposite

helix sense, i.e. the synclinic is right-handed and the

anticlinic left-handed, or vice versa (this is the usual case

for components of the same enantiomeric type), the

twisting sense reversal was found to take place at

the transition between SmC* and SmC�a or within the

intermediate SmC�b and SmC�c phases. In the first two

rows of figure 2, two examples of polarizing microscopy

texture sets are shown, demonstrating this connection of

helix inversion and clinicity transition, via intermediate

phases (a) and directly (b). The opposite helix sense on

the two sides of the transition is verified by decrossing

the polarizers, producing more saturated colours for

one twisting sense but a brighter texture with washed-

out colours for the other. In contrast to a helix inversion

within a single phase there is here no pitch divergence

connected to the twisting sense reversal. Rather the

contrary phenomenon was actually observed in most

cases: as the mixing ratio was shifted towards the

transition composition at a particular temperature,

the pitch tightened. This happened almost always in

the SmC* region and often also in the SmC�a phase.

Although apparent in figure 2 (b), the effect is seen

better in the examples of figure 3, where the changes in

colour clearly demonstrate how the pitch is changing.

On the other hand, if the syn- and anticlinic

components each on their own have the same helix

twisting sense, we create an additional type of frustra-

tion, since the helix sense has to revert at the syn- to

anticlinic transition as shown in § 2. We do not need to

switch to the opposite enantiomer of one of the

components — thereby strongly changing the situation

with respect to chiral interactions, with obvious

Figure 1. A homeotropically aligned sample of (S)-12F1M7
in the SmC* phase (top row) and SmC�a phase (bottom row),
observed in transmission in a polarizing microscope illumi-
nated with blue light (436 nm), between crossed and slightly
decrossed polarizers, as indicated at the bottom left of each
photo.
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Table 1. Compounds used in the study; transition temperatures in uC.

Compound Structure Phase sequence Type

(S)-12F1M7 SmCa* 79.5 SmCc* 83 SmCb* 85 SmC* 92 SmA* 110 I syn- & anticlinic

(S)-EHPDoCBC Cr 50 SmCa* 90 SmA* 104 I anticlinic

(S)-TFMHPOBC Cr 87 SmCa* 114.5 SmA* 123 I anticlinic

(S, S)-M7BBM7 Cr 57 SmCa* 65 SmQ* 85 I anticlinic

(S)-DOBAMBC Cr 76 (SmI* 63) SmC* 95 SmA* 117 I synclinic

(S)-M8 Cr 96 (SmF* 69 SmI* 74) SmC* 147 N* 183 BP* 185 I synclinic

(S)-S1B8 Cr 62 SmX* 75 SmC* 119 SmA* 131 N* 136 I synclinic

(S)-IPC-16 Cr 100 SmC* 140.5 SmA* 168 I synclinic

(S)-MHPOdCBC Cr 68 (SmI* 66.5) SmC* 114 SmA* 124 I synclinic
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consequences for both helix and spontaneous polariza-

tion — to reach this situation, but we can induce it by

choosing one component with a trifluoromethyl group

instead of methyl at the stereogenic centre. For one and

the same phase, the helix handedness of a methyl- and a

trifluoromethyl-containing compound is opposite,

hence the handedness of a non-fluorinated synclinic is

the same as that of a fluorinated anticlinic.

The interesting way in which nature decides to resolve

this frustration can be seen in figure 2 (c), where the

anticlinic is the well studied trifluoromethyl-containing

antiferroelectric liquid crystal TFMHPOBC. At the

phase transition point the helix diverges but there is no

change in helix sense at any place, as is obvious from the

micrographs with decrossed polarizers. By making the

helical pitch infinite, where left- and right-handed are

degenerate, the system can fulfill both—seemingly

incompatible—constraints that the helix sense has to

change at a syn- to anticlinic transition, and that both

components each on their own has the same helix sense.

Whereas pitch divergence within a single phase is

generally connected to a helix sense reversal, in the case

of mixtures of syn- and anticlinics we have divergence in

the absence of reversal, whereas the pitch generally

shortens on approaching the ordinary transition

between syn- and anticlinic order with helix sense

reversal. These two cases are illustrated very schemati-

cally in figure 4.

The strong influence on the pitch which the combina-

tion of syn- and anticlinics has might be put to use when

developing mixtures for FLC or AFLC displays. In

most cases the pitch should preferably be long in order

to ensure complete surface stabilization. By choosing

anticlinic and synclinic components with the same helix

handedness, which do not generate intermediate phases

or extend the SmA* phase when mixed together, one

forces the system to undergo a pitch divergence on

approaching the clinicity change. The mixture ratio

Figure 2. Homeotropically aligned contact samples between
synclinics and anticlinics where the clinicity transition takes
place via the intermediate SmC�b and SmC�c phases (a) and
directly (b, c). In the middle column the polarizers are crossed,
in the left and right they are decrossed as indicated at the
bottom left of each frame. This visualizes the helix handedness
reversal in (a) and (b) (SmC* gets darker when SmC�a gets
brighter and vice versa) and the constancy in handedness in
(c) (both phases get brighter or darker for the same type
of polarizer decrossing).

Figure 3. Homeotropically aligned contact samples between
synclinics and anticlinics where the clinicity transition takes
place via subphases (a, b) and directly (c), in all cases with a
drastic decrease in SmC* pitch on approaching the transition.
In cases (a, b) this holds also for the SmC�a phase.
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should be selected as close as possible to the point of

clinicity change, but of course sufficiently far away to

ensure that only the desired phase, SmC* or SmC�a,

appears in the phase sequence. On the other hand, for
devices utilizing the deformed helix mode a SmC* phase

with very short pitch is required. This can then be

obtained by choosing components with opposite helix

handedness in their pure states [16].

4. Conclusions

By studying the free energy of the helical SmC* and

SmC�a phases within a discrete phenomenological model

we have shown that the helix handedness in the two

phases should be opposite. The discrete model produces

essentially the same expression for the helical pitch of

the SmC* phase as the general continuum theory. Using
the same discrete model we have also obtained the

expression for the pitch in the anticlinic antiferroelectric

SmC�a phase. These equations indicate that the helical

pitch should decrease on approaching the synclinic–

anticlinic transition provided that the tilt angle does not

vary strongly in the transition region. It was also shown

that in chiral smectics exhibiting a transition between

syn- and anticlinic tilted order, the helical structure with
normal pitch (on the order of mm) may loose its stability

if the synclinic temperature range is small, such that the

transition takes place close to the low temperature

border of the SmA* phase, where the tilt angle is small.

This may be an indication of a transition into the SmC�a
phase.

The theoretically predicted helix handedness reversal

related to a change between syn- and anticlinic order

was demonstrated experimentally by studying mixtures

of strict syn- and anti-clinic mesogens where the clinicity

transition takes place at a certain mixture ratio, either

directly or via induced intermediate SmC�b and SmC�c
phases. If one chooses two components which have the

same helix handedness each on their own, although one

of them is synclinic and the other one anticlinic, the

system lets the pitch diverge at the clinicity transition,

such that the requirement of helix reversal can still be

fulfilled, as left- and right-handed helices are degenerate

at infinite pitch.

This paper is dedicated to Sven T. Lagerwall at the

occasion of his 70th birthday.
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